
Algorithms for empirical research
When efficiency (and brain) matters

Laurent R. Bergé
BxSE, University of Bordeaux
2025-06-19 REGIS summer school

Where to find the code of this presentation?

https://github.com/lrberge/2025_REGIS_algorithm

1 / 81

https://github.com/lrberge/2025_REGIS_algorithm

Why care about algorithms?

Can you count how many dots there is?

3 / 81

Two algorithms: Same results, different speeds

Algo 1: One step

1. count each dots 1 by 1

• 1 + 1 + 1 +… = 100
• ≈ 40s

4 / 81

Two algorithms: Same results, different speeds

Algo 1: One step

1. count each dots 1 by 1

• 1 + 1 + 1 +… = 100
• ≈ 40s

Algo 2: Three steps

1. count the number of dots per square
2. count the number of squares
3. multiply

• 5 × 20 = 100
• ≈ 6s

4 / 81

Two algorithms: Same results, different speeds

Algo 1: One step

1. count each dots 1 by 1

• 1 + 1 + 1 +… = 100
• ≈ 40s

Algo 2: Three steps

1. count the number of dots per square
2. count the number of squares
3. multiply

• 5 × 20 = 100
• ≈ 6s

Everybody chooses Algo 2

4 / 81

Two algorithms: Same results, different speeds

Algo 1: One step

1. count each dots 1 by 1

• 1 + 1 + 1 +… = 100
• ≈ 40s

Algo 2: Three steps

1. count the number of dots per square
2. count the number of squares
3. multiply

• 5 × 20 = 100
• ≈ 6s

When you use your brain:
=> you choose algo 2

5 / 81

Two algorithms: Same results, different speeds

Algo 1: One step

1. count each dots 1 by 1

• 1 + 1 + 1 +… = 100
• ≈ 40s

Algo 2: Three steps

1. count the number of dots per square
2. count the number of squares
3. multiply

• 5 × 20 = 100
• ≈ 6s

When you use your brain:
=> you choose algo 2

When you use your computer:
=> why do you use algo 1?

5 / 81

In the meantime…

7 / 81

Why algorithms matter in empirical research

Typical research workflow

Before review

• find an idea (read stuff, think)
• develop a research design
• find the data
• clean the data
• produce desc stats, econometrics and graphs
• write

8 / 81

Why algorithms matter in empirical research

Typical research workflow

Before review

• find an idea (read stuff, think)
• develop a research design
• find the data
• clean the data
• produce desc stats, econometrics and graphs
• write

After review: i.e. please the referrees

• add more variables, more data
• get new results
• hope it works

8 / 81

Why algorithms matter in empirical research
Typical research workflow

Before review

• find an idea (read stuff, think)
• develop a research design
• find the data
• clean the data
• produce desc stats, econometrics and graphs
• write

After review: i.e. please the referrees

• add more variables, more data
• get new results
• hope it works

highly time consuming!
bold pink =

affected by algorithms!
9 / 81

Research: Theory vs Practice

Theory

10 / 81

Research: Theory vs Practice

Theory

Reality

10 / 81

How to be more productive?
Cut the time cleaning the data and getting the results

11 / 81

How to be more productive?
Cut the time cleaning the data and getting the results

That’s the point of good algorithms!

11 / 81

Why algorithms matter for innovation studies?

Data sets are large + the size explodes when we use text:

MAG (publications) 400 GB (200 GB for the abstracts)
Patstat full data set about 300 GB (includes lots of texts)
OECD REGPAT 6 GB (processed patent data)
USPTO dozens of GB

12 / 81

Algorithmic efficiency
A tale of two examples

Example 1: Text similarity measures

Arts, S., Cassiman, B., Gomez, J. C.
Text matching to measure patent similarity.
2018, Strategic Management Journal 39(1): 62-84.

Question

Can we use the text contained in patent titles and abstracts to assess
similarity between them?

14 / 81

Example 1: Text similarity measures

Arts, S., Cassiman, B., Gomez, J. C.
Text matching to measure patent similarity.
2018, Strategic Management Journal 39(1): 62-84.

Question

Can we use the text contained in patent titles and abstracts to assess
similarity between them?

Simple measure: Jaccard measure

𝑖, 𝑗: patents 𝑊𝑖: set of words in abstract/title of patent 𝑖

sim𝑖,𝑗 =
size(𝑊𝑖 ∩𝑊𝑗)
size(𝑊𝑖 ∪𝑊𝑗)

14 / 81

Practice!

patent number title
1 regis is a super cool summer school
2 the regis summer school rocks
3 I will go on vacations this summer

Similarity of patents 1 and 2
title 1: regis is a super cool summer school
title 2: the regis summer school rocks

3 words in common
9 different words in total

sim12 =
3
9
= 0.33

15 / 81

Practice!

patent number title
1 regis is a super cool summer school
2 the regis summer school rocks
3 I will go on vacations this summer

Similarity of patents 1 and 2
title 1: regis is a super cool summer school
title 2: the regis summer school rocks

3 words in common
9 different words in total

sim12 =
3
9
= 0.33

Let’s code this up!

15 / 81

Similarity between two sentences

sim_single = function(x, y){
 words_x = strsplit(x, " ")[[1]]
 words_y = strsplit(y, " ")[[1]]

 sim = length(intersect(words_x, words_y)) / length(union(words_x, words_y))

 return(sim)
}

NOTE 1: This code is just an example in R. There are many ways to do this.
NOTE 2: There is no text cleaning.

16 / 81

Pariwise similarity for a vector of sentences
jaccard_algo_1 = function(x){
 # in: vector of text
 # out: data.frame with i,j, jaccard measure

 n = length(x)
 base_pairs = expand.grid(words_i = x, words_j = x, stringsAsFactors = FALSE)

 pairs_id = expand.grid(i = 1:n, j = 1:n)

 base_pairs = within(base_pairs, {
 i = pairs_id$i
 j = pairs_id$j
 })

 base_pairs = subset(base_pairs, i != j)

 n_pairs = nrow(base_pairs)
 sim = numeric(n_pairs)
 for(index in 1:n_pairs){
 sim[index] = sim_single(base_pairs$words_i[index], base_pairs$words_j[index])
 }

 base_pairs$jaccard = sim

 return(base_pairs)
}

17 / 81

Q: What do you think of the previous code?

18 / 81

Q: What do you think of the previous code?

A: It is perfectly valid….

18 / 81

Q: What do you think of the previous code?

A: It is perfectly valid…. but slooooow!

18 / 81

Q: What do you think of the previous code?

A: It is perfectly valid…. but slooooow!

Before trying to understand why, let’s see another algorithm!

18 / 81

Pairwise text similarity: New algorithm
1. notice that size(𝑊𝑖 ∪𝑊𝑗) = size(𝑊𝑖) + size(𝑊𝑗) − size(𝑊𝑖 ∩𝑊𝑗)
2.

3.

4.

5.
19 / 81

Pairwise text similarity: New algorithm
1. notice that size(𝑊𝑖 ∪𝑊𝑗) = size(𝑊𝑖) + size(𝑊𝑗) − size(𝑊𝑖 ∩𝑊𝑗)
2. create the data set base_word_i where each row is a patent x word, with variables i

and word, and deduplicate it
3.

4.

5.
19 / 81

Pairwise text similarity: New algorithm
1. notice that size(𝑊𝑖 ∪𝑊𝑗) = size(𝑊𝑖) + size(𝑊𝑗) − size(𝑊𝑖 ∩𝑊𝑗)
2. create the data set base_word_i where each row is a patent x word, with variables i

and word, and deduplicate it
3. create base_word_j a copy of base_word_i where you replaced i with j

base_word_i
i word
1 regis
1 is
⋮ ⋮
3 summer

base_word_j
j word
1 regis
1 is
⋮ ⋮
3 summer

4.

5.
19 / 81

Pairwise text similarity: New algorithm
1. notice that size(𝑊𝑖 ∪𝑊𝑗) = size(𝑊𝑖) + size(𝑊𝑗) − size(𝑊𝑖 ∩𝑊𝑗)
2. create the data set base_word_i where each row is a patent x word, with variables i

and word, and deduplicate it
3. create base_word_j a copy of base_word_i where you replaced i with j

base_word_i
i word
1 regis
1 is
⋮ ⋮
3 summer

base_word_j
j word
1 regis
1 is
⋮ ⋮
3 summer

4. merge the two tables by word and drop the pairs with the same IDs

base_words_ij
word i j
regis 1 2
regis 2 1

⋮ ⋮ ⋮
summer 3 2

5.
19 / 81

Pairwise text similarity: New algorithm
1. notice that size(𝑊𝑖 ∪𝑊𝑗) = size(𝑊𝑖) + size(𝑊𝑗) − size(𝑊𝑖 ∩𝑊𝑗)
2. create the data set base_word_i where each row is a patent x word, with variables i

and word, and deduplicate it
3. create base_word_j a copy of base_word_i where you replaced i with j

base_word_i
i word
1 regis
1 is
⋮ ⋮
3 summer

base_word_j
j word
1 regis
1 is
⋮ ⋮
3 summer

4. merge the two tables by word and drop the pairs with the same IDs

base_words_ij
word i j
regis 1 2
regis 2 1

⋮ ⋮ ⋮
summer 3 2

5. count, for each 𝑖 × 𝑗 pair, the number of words:
tadam you have the numerator for all pairs! 19 / 81

Pairwise text similarity: New algorithm

6. in base_word_i, count, for each 𝑖, the number of words, you obtain size(𝑊𝑖)
7.

8.
9.

10.

20 / 81

Pairwise text similarity: New algorithm

6. in base_word_i, count, for each 𝑖, the number of words, you obtain size(𝑊𝑖)
7. merge that to the previous data set, you end up with

i j numerator size_i size_j
1 2 3 5 7
1 3 1 7 7
2 3 1 7 5
⋮ ⋮ ⋮ ⋮ ⋮

8.
9.

10.

20 / 81

Pairwise text similarity: New algorithm

6. in base_word_i, count, for each 𝑖, the number of words, you obtain size(𝑊𝑖)
7. merge that to the previous data set, you end up with

i j numerator size_i size_j
1 2 3 5 7
1 3 1 7 7
2 3 1 7 5
⋮ ⋮ ⋮ ⋮ ⋮

8. create the denominator as: denom = size_i + size_j - numerator
9.

10.

20 / 81

Pairwise text similarity: New algorithm

6. in base_word_i, count, for each 𝑖, the number of words, you obtain size(𝑊𝑖)
7. merge that to the previous data set, you end up with

i j numerator size_i size_j
1 2 3 5 7
1 3 1 7 7
2 3 1 7 5
⋮ ⋮ ⋮ ⋮ ⋮

8. create the denominator as: denom = size_i + size_j - numerator
9. compute the jaccard measure as: numerator/denominator

10.

20 / 81

Pairwise text similarity: New algorithm

6. in base_word_i, count, for each 𝑖, the number of words, you obtain size(𝑊𝑖)
7. merge that to the previous data set, you end up with

i j numerator size_i size_j
1 2 3 5 7
1 3 1 7 7
2 3 1 7 5
⋮ ⋮ ⋮ ⋮ ⋮

8. create the denominator as: denom = size_i + size_j - numerator
9. compute the jaccard measure as: numerator/denominator

10. don’t forget to add the pairs having 0 similarity (if needed)

20 / 81

New algorithm: code

jaccard_algo_2 = function(x){
 # in: x, text vector
 # out: data frame with i, j, jaccard

 library(data.table)

 # we split the sentences into words
 n = length(x)
 x_split = strsplit(x, "\\s+")
 n_all = lengths(x_split)

 # we create the id x word data set
 base_word_i = data.table(i = rep(1:n, n_all), word =
unlist(x_split))
 setkey(base_word_i, word)
 base_word_i = unique(base_word_i)

 base_word_j = setNames(base_word_i, c("j", "word"))

 # word, i, j data set
 base_word_ij = merge(base_word_i, base_word_j,
 allow.cartesian = TRUE)

 # continued on the right...

 # we get the numerator
 base_sim = base_word_ij[, .(numerator = .N), by = .
(i, j)]

 # we add the two sizes
 base_size_i = base_word_i[, .(size_i = .N), by = i]

 base_sim = merge(base_sim, base_size_i, by = "i")
 base_sim = merge(base_sim, base_size_i[, .(j = i,
size_j = size_i)], by = "j")

 # compute the denom and the measure
 base_sim[, denom := size_i + size_j - numerator]
 base_sim[, jaccard := numerator / denom]

 # final step: adding numerator = 0
 res = as.data.table(expand.grid(i = 1:n, j = 1:n))
 res = res[i != j]
 res = merge(res, base_sim[, .(i, j, jaccard)], by =
c("i", "j"), all.x = TRUE)
 res[is.na(jaccard), jaccard := 0]

 return(res)
}

21 / 81

Application

Let’s test the two algorithms

Data set

The abstracts of 200 publications: 40k pairs.

22 / 81

Application

Let’s test the two algorithms

Data set

The abstracts of 200 publications: 40k pairs.

200 abstracts
abstracts = readLines("./_DATA/pub-abstracts.txt")

base_1 = jaccard_algo_1(abstracts)
#> Elapsed: 5s 546ms 444us

base_2 = jaccard_algo_2(abstracts)
#> Elapsed: 76ms 544us

all(sort(base_1$jaccard) == sort(base_2$jaccard))
[1] TRUE

=> Algo 2 is 72 times faster

22 / 81

Application

Let’s test the two algorithms

Data set

The abstracts of 200 publications: 40k pairs.

200 abstracts
abstracts = readLines("./_DATA/pub-abstracts.txt")

base_1 = jaccard_algo_1(abstracts)
#> Elapsed: 5s 546ms 444us

base_2 = jaccard_algo_2(abstracts)
#> Elapsed: 76ms 544us

all(sort(base_1$jaccard) == sort(base_2$jaccard))
[1] TRUE

=> Algo 2 is 72 times faster

Same results, different speeds!

22 / 81

Question

Q: Why is algo 2 faster depsite having more steps?

Let’s try to understand why!

23 / 81

How a computer works 101

How does a computer work?

Magic!

25 / 81

How does a computer work?

Magic! Nope, physics!

It’s just electrons moving!

25 / 81

Never forget the hardware!

26 / 81

An electron’s journey

27 / 81

Let’s put oursevles in the shoes of an
electron’s family

The problem

You are the parent of a family of 10 electrons.

They all go to the university and you want to buy, for each of them:
• a table
• a desk
• a lamp

29 / 81

The problem

You are the parent of a family of 10 electrons.

They all go to the university and you want to buy, for each of them:
• a table
• a desk
• a lamp

You buy all this at IKEA the RAM

RAM Warehouse

=

Q: How do you plan your shopping?

29 / 81

Two shopping algorithms

Algo E1: Child-wise

For children 1
1. pick one table
2. pick one chair
3. pick one lamp

For children 2
1. pick one table
2. pick one chair
3. pick one lamp

… etc …

For children 10
1. pick one table
2. pick one chair
3. pick one lamp

Algo E2: Item-wise

1. pick 10 tables
2. pick 10 chairs
3. pick 10 lamps

30 / 81

Let’s shop!

With you finger: Apply the two algorithms

31 / 81

Conclusion

Algo E2 minimizes the distance travelled by the electron. Hence it is faster.

32 / 81

Conclusion

Algo E2 minimizes the distance travelled by the electron. Hence it is faster.

Back to the text-similarity example
Solution 1

1. loop on each publication pair:
• compute the text similarity for the pair

=> identical to Algo E1

Solution 2

1. decompose the measure into simple components
2. compute each component on the full table
3. compute the text similarity from the components

=> identical to Algo E2

32 / 81

Takeaway

Rule 1: Shop efficiently in the RAM’s warehouse!

33 / 81

In the meantime…

35 / 81

ChatGPT: The prompt

Prompt

I am using R, and I have a vector of three sentences, as follows:

x = c(
 "regis is a super cool summer school",
 "the regis summer school rocks",
 "I will go on vacations this summer"
)

I would like to compute a the similarity between each of the elements of the
vector. The similarity measure would be equal to the number of words in
common divided by the total number of words across the two sentences.

Can you write a function that takes that vector as input and, as output,
returns a data.frame with three variables: “i”, “j”, the indexes of the pairs being
compared, and “sim” the similarity measure? Thanks.

Full discussion here: https://chatgpt.com/share/68529265-c2b8-800b-9340-0a2b9c6f31a9
36 / 81

https://chatgpt.com/share/68529265-c2b8-800b-9340-0a2b9c6f31a9

ChatGPT: The result
jaccard_algo_chatgpt <- function(sentences) {
 # Tokenize sentences into lowercase word sets
 word_sets <- lapply(sentences, function(s) {
 words <- tolower(s)
 words <- unlist(strsplit(words, "\\s+"))
 return(unique(words))
 })

 # Prepare result container
 results <- data.frame(i = integer(), j = integer(), sim = numeric())

 n <- length(sentences)

 for (i in 1:(n - 1)) {
 for (j in (i + 1):n) {
 words_i <- word_sets[[i]]
 words_j <- word_sets[[j]]

 common <- intersect(words_i, words_j)
 total <- union(words_i, words_j)

 sim <- length(common) / length(total)

 results <- rbind(results, data.frame(i = i, j = j, sim = sim))
 }
 }

 return(results)
}

37 / 81

Benchmark: ChatGPT algo

200 abstracts
abstracts = readLines("./_DATA/pub-abstracts.txt")

res_brain = jaccard_algo_2(abstracts)
#> Elapsed: 91ms 512us

res_gpt = jaccard_algo_chatgpt(abstracts)
#> Elapsed: 9s 626ms 168us

=> ChatGPT’s algo is ≈ 100 times slower

38 / 81

Benchmark: ChatGPT algo

200 abstracts
abstracts = readLines("./_DATA/pub-abstracts.txt")

res_brain = jaccard_algo_2(abstracts)
#> Elapsed: 91ms 512us

res_gpt = jaccard_algo_chatgpt(abstracts)
#> Elapsed: 9s 626ms 168us

=> ChatGPT’s algo is ≈ 100 times slower

Not great: let’s make ChatGPT try harder!

38 / 81

ChatGPT: New prompt

Continuing the first prompt

Can you make the algorithm faster?

39 / 81

ChatGPT: New result
jaccard_algo_chatgpt_faster <- function(sentences) {
 # Preprocess: convert to lowercase and split into unique word sets
 word_sets <- lapply(sentences, function(s) {
 unique(strsplit(tolower(s), "\\s+")[[1]])
 })

 n <- length(sentences)
 n_pairs <- choose(n, 2)

 # Preallocate result list
 results <- vector("list", n_pairs)
 idx <- 1

 for (i in 1:(n - 1)) {
 words_i <- word_sets[[i]]
 for (j in (i + 1):n) {
 words_j <- word_sets[[j]]

 common <- intersect(words_i, words_j)
 total <- union(words_i, words_j)
 sim <- length(common) / length(total)

 results[[idx]] <- c(i, j, sim)
 idx <- idx + 1
 }
 }

 # Convert to data.frame
 results_df <- as.data.frame(do.call(rbind, results))
 names(results_df) <- c("i", "j", "sim")

 # Convert column types
 results_df$i <- as.integer(results_df$i)
 results_df$j <- as.integer(results_df$j)
 results_df$sim <- as.numeric(results_df$sim)

 return(results_df)
}

40 / 81

Benchmark: New ChatGPT algo

200 abstracts
abstracts = readLines("./_DATA/pub-abstracts.txt")

res_brain = jaccard_algo_2(abstracts)
#> Elapsed: 78ms 544us

res_gpt = jaccard_algo_chatgpt_faster(abstracts)
#> Elapsed: 472ms 554us

=> Algo 2 is ≈ 6 times fatser than ChatGPT’s. But does it scale?

41 / 81

Benchmark: New ChatGPT algo

200 abstracts
abstracts = readLines("./_DATA/pub-abstracts.txt")

res_brain = jaccard_algo_2(abstracts)
#> Elapsed: 78ms 544us

res_gpt = jaccard_algo_chatgpt_faster(abstracts)
#> Elapsed: 472ms 554us

=> Algo 2 is ≈ 6 times fatser than ChatGPT’s. But does it scale?

does it scale? Let's check with 400 abstracts
double_abstracts = c(abstracts, abstracts)

res_brain = jaccard_algo_2(double_abstracts)
#> Elapsed: 96ms 456us

res_gpt = jaccard_algo_chatgpt_faster(double_abstracts)
#> Elapsed: 1s 952ms 263us

=> Algo 2 now is 20 times faster: it does scale.

41 / 81

ChatGPT: Give all you got!

Accepting ChatGPT's suggestion

ChatGPT: Let me know if you want an even faster implementation using a
package like data.table.

Me: Yes, can you make a faster one with data table?

42 / 81

ChatGPT’s fastest code

jaccard_algo_chatgpt_fastest <- function(sentences) {

 library(data.table)

 n <- length(sentences)

 # Tokenize each sentence into a list of unique lowercase words
 tokens <- lapply(sentences, function(s) {
 unique(strsplit(tolower(s), "\\s+")[[1]])
 })

 # Create all unique pairs of sentence indices
 pairs <- CJ(i = 1:n, j = 1:n)[i < j]

 # Compute similarity for each pair
 pairs[, sim := mapply(function(i, j) {
 words_i <- tokens[[i]]
 words_j <- tokens[[j]]
 length(fintersect(words_i, words_j)) / length(funion(words_i, words_j))
 }, i, j)]

 return(pairs[])
}

43 / 81

Benchmark: Fastest ChatGPT algo

200 abstracts
abstracts = readLines("./_DATA/pub-abstracts.txt")

res_brain = jaccard_algo_2(abstracts)
#> Elapsed: 77ms 378us

res_gpt = jaccard_algo_chatgpt_fastest(abstracts)
#> Error in .set_ops_arg_check(x, y, all, .seqn = TRUE) :
#> x and y must both be data.tables

=> ChatGPT’s algo errors

44 / 81

Brain vs ChatGPT: Conclusion

Contrary to what AI enthousiasts want you to believe:

Learning and thinking is still useful!

Even for coding!

45 / 81

Example 2: Econometrics

Can you count how many red dots there is?
Task: Count the red dots

47 / 81

Never do more than what you need

Task: Count the red dots When you use your brain:
=> you only count the red dots

48 / 81

Never do more than what you need

Task: Count the red dots When you use your brain:
=> you only count the red dots

When you use your computer:
=> why do you also count the yellow
dots?

48 / 81

Back in 2020 (when twitter was cool)

• PhD student asking on twitter:★
‣ “I’m using Imai and Song weighted fixed-effects estimator.”
‣ “My estimations take forever. “
‣ “Help!”

★: I tried but couldn’t find the tweet! If by chance you find it, please send it to me!!!
49 / 81

In the meantime…

51 / 81

ChatGPT solution to the econometrics problem
The prompt

Prompt

I am using the function wfe from the wfe package in R. Here is an example of how I use it:

start example code
library(wfe)
library(fixest)
library(data.table)

example data set
data(base_did, package = "fixest")
set.seed(0)
base_example = as.data.table(base_did)
id_first = sample(108, 20) ; id_last = sample(108, 20)
base_example = base_example[!(id %in% id_first & period <= 3) & !(id %in% id_last & period >= 7)]
base_example[, treat_post := treat*post]

wfe_v1 = wfe(y ~ treat_post + x1, data = base_example, treat = "treat_post",
 unit.index = "id", time.index = "period", method = "unit",
 qoi = "ate", hetero.se = TRUE, auto.se = TRUE)
end of example code

I find this function slow, especially for large data sets. Can you optimize it, and make it run
faster?

52 / 81

ChatGPT: Solution 1

53 / 81

ChatGPT: Solution 1

LOL, I’m fixest’s author!

53 / 81

ChatGPT: Solution 1

54 / 81

ChatGPT: All solutions

55 / 81

ChatGPT: All solutions

Summary in lay terms

Don’t use the wfe method. All suggestions are off.

Full ChatGPT discussion here: https://chatgpt.com/share/68527bc3-cf70-800b-848b-f4e02924979c
55 / 81

https://chatgpt.com/share/68527bc3-cf70-800b-848b-f4e02924979c

ChatGPT solution to the econometrics problem
Informal summary

You ask for an apple, ChatGPT gives you an orange and
arguments that the orange tastes like apple.

56 / 81

Back in 2020 (when twitter was cool)

• PhD student asking on twitter:★
‣ “I’m using Imai and Song weighted fixed-effects estimator.”
‣ “My estimations take forever. “
‣ “Help!”

•

★: I tried but couldn’t find the tweet! If by chance you find it, please send it to me!!!
57 / 81

Back in 2020 (when twitter was cool)

• PhD student asking on twitter:★
‣ “I’m using Imai and Song weighted fixed-effects estimator.”
‣ “My estimations take forever. “
‣ “Help!”

• I had just landed an AP job (this job!), I had some spare time:
‣
‣

★: I tried but couldn’t find the tweet! If by chance you find it, please send it to me!!!
57 / 81

Back in 2020 (when twitter was cool)

• PhD student asking on twitter:★
‣ “I’m using Imai and Song weighted fixed-effects estimator.”
‣ “My estimations take forever. “
‣ “Help!”

• I had just landed an AP job (this job!), I had some spare time:
‣ I got interested
‣

★: I tried but couldn’t find the tweet! If by chance you find it, please send it to me!!!
☆: Maybe I’m bragging here ;-) but it was definitely less than 1h.

57 / 81

Back in 2020 (when twitter was cool)

• PhD student asking on twitter:★
‣ “I’m using Imai and Song weighted fixed-effects estimator.”
‣ “My estimations take forever. “
‣ “Help!”

• I had just landed an AP job (this job!), I had some spare time:
‣ I got interested
‣ 20 min later:☆ same estimation running at least 10 times faster

★: I tried but couldn’t find the tweet! If by chance you find it, please send it to me!!!
☆: Maybe I’m bragging here ;-) but it was definitely less than 1h.

57 / 81

Back in 2020 (when twitter was cool)

• PhD student asking on twitter:★
‣ “I’m using Imai and Song weighted fixed-effects estimator.”
‣ “My estimations take forever. “
‣ “Help!”

• I had just landed an AP job (this job!), I had some spare time:
‣ I got interested
‣ 20 min later:☆ same estimation running at least 10 times faster

What was the problem?

★: I tried but couldn’t find the tweet! If by chance you find it, please send it to me!!!
☆: Maybe I’m bragging here ;-) but it was definitely less than 1h.

57 / 81

The method

Imai, K. and Song, I
When should we use unit fixed-effects regression models for causal inference
with longitudinal data?
2019, Amercan Journal of Political Science 63(2): 467-490

It’s a weighted OLS esimation, the key is the weights.

58 / 81

The code implementing the weights

• https://github.com/insongkim/wfe/blob/master/src/wfe.c

• function GenWeightsUnit, coded in c, ≈ 200 lines, does many things

void GenWeightsUnit(int *unit_index, int *time_index, int *tr, int *C_it,
 int *len_data, /* total number of rows in the data */
 int *len_u_index,
 int *len_t_index,
 int *ate, int *att,
 int *verbose, /* 1 if extra print is needed */
 double *weight) {
 int i, j;
 /* Rprintf("u_index: %d, t_index: %d, len_data: %d\n", *len_u_index,
*len_t_index, *len_data); */

 int** exist = intMatrix(*len_t_index, *len_u_index);
 is_index_exist(unit_index, time_index, len_u_index, len_t_index,
len_data, exist);

 /* #pragma omp parallel for */
 for (i = 0 ; i < *len_u_index ; i++) {

 if(*verbose && *len_t_index>10) {
 int percent = *len_u_index/10;
 if (i % percent == 0){
 /* Rprintf("- %d th year calculated:\n", (j+1)); */
 Rprintf(".");
 R_FlushConsole();
 }
 }

 for (j = 0 ; j < *len_t_index ; j++) {
 double w_it[*len_t_index];

 // initialize all elements in w_it to 0
 memset(w_it, 0, sizeof(double)*(*len_t_index));

 int c_it = 0;
 int t_it = 0;

 // initialize c_it and t_it
 int k;
 for (k = 0 ; k < *len_data ; k++) {
 if (unit_index[k] == (i+1) && time_index[k] == (j+1)) {
 c_it = C_it[k];
 t_it = tr[k];
 /* Rprintf(" t_it: %d\n", t_it); */
 /* Rprintf("0] unit: %d\n", i+1); */
 }
 }

 /* Rprintf("time index exist for unit %d and time %d: %d\n",
 i+1, j+1, is_time_index_exist(unit_index, time_index, i+1,
 j+1, *len_data)); */

 /* if (is_time_index_exist(unit_index, time_index, i+1, j+1,
*len_data)) */
 if (exist[j][i]) {
 if (t_it == 1) { /* ifTRUE(sub[,treat]...) == 1 */
 // count control
 double count_control = 0;
 int k = 0;
 for (k = 0 ; k < *len_data ; k++) {
 if (unit_index[k] == (i+1) && tr[k] == 0)
 count_control++;
 }

 if (count_control > 0) {
 double v_it = 1 / count_control;
 /* Rprintf("1] time: %d\n", j+1); */
 /* Rprintf("5.1] number of control: %f\n", count_control); */
 /* Rprintf("6] v_it: %f\n", v_it); */
 w_it[j] = 1;

 for (k = 0 ; k < *len_data ; k++) {
 if (unit_index[k] == (i+1) && tr[k] == 0) {
 int t_index = time_index[k] - 1;
 // Rprintf("2] opposite treatment index: %d\n", t_index+1);
 w_it[t_index] = v_it;

 }
 }

 }
 /* PdoubleArray(w_it, *len_t_index); */
 if (*ate == 1) {
 int k = 0;
 for (k = 0 ; k < *len_t_index ; k++)
 weight[k*(*len_u_index)+i] = weight[k*(*len_u_index)+i] +
(w_it[k] * c_it);
 }
 else if (*att == 1) {
 int k = 0;
 for (k = 0 ; k < *len_t_index ; k++)
 weight[k*(*len_u_index)+i] = weight[k*(*len_u_index)+i] +
(w_it[k] * c_it * t_it);
 }
 }

else if (t_it == 0) { /* ifTRUE(sub[,treat]...) == 0 */
 // count treate
 double count_treat = 0;
 int k = 0;
 for (k = 0 ; k < *len_data ; k++) {
 if (unit_index[k] == (i+1) && tr[k] == 1)
 count_treat++;
 }

 if (count_treat > 0) {
 double v_it = 1 / count_treat;
 /* Rprintf("3] j: %d\n", j+1); */
 /* Rprintf("5.2] number of treated: %f\n", count_treat); */
 /* Rprintf("6] v_it: %f\n", v_it); */
 w_it[j] = 1;

 for (k = 0 ; k < *len_data ; k++) {
 if (unit_index[k] == (i+1) && tr[k] == 1) {
 int t_index = time_index[k] - 1;
 /* Rprintf("4] opposite treatment index: %d\n", t_index+1); */
 w_it[t_index] = v_it;
 }
 }
 }
 /* PdoubleArray(w_it, *len_t_index); */
 if (*ate == 1) {
 int k = 0;
 for (k = 0 ; k < *len_t_index ; k++)
 weight[k*(*len_u_index)+i] = weight[k*(*len_u_index)+i] +
(w_it[k] * c_it);
 }
 else if (*att == 1) {
 int k = 0;
 for (k = 0 ; k < *len_t_index ; k++)
 weight[k*(*len_u_index)+i] = weight[k*(*len_u_index)+i] +
(w_it[k] * c_it * t_it);
 }

 }

 }
 }
 }

 FreeintMatrix(exist, *len_t_index);
}

59 / 81

https://github.com/insongkim/wfe/blob/master/src/wfe.c

New version
LB’s implementation:

• tailored to the task
• coded in R, ≈ 20 lines, does a single thing

unit_weights = function(index){
 # index: data.frame with two columns: unit and treatment indicator (treat x post)

 # for easy aggregations
 library(data.table)

 res = as.data.table(index)
 names(res) = c("unit", "treatment")

 # we compute the weigts as in Theorem 1 (p. 427)
 res[, n_treated := sum(treatment), by = unit]
 res[, n_not_treated := sum(1 - treatment), by = unit]
 res[, m_size := treatment * n_not_treated + (1 - treatment) * n_treated]
 res[, w := 1 + treatment * (m_size / n_treated) +
 (1 - treatment) * (m_size / n_not_treated)]
 res[is.na(w), w := 0]

 # we return the weights
 res$w
}

60 / 81

Side to side comparison
library(wfe)
library(fixest)
library(data.table)

example data set
data(base_did, package = "fixest")
set.seed(0)
base_example = as.data.table(base_did)
id_first = sample(108, 20) ; id_last = sample(108, 20)
base_example = base_example[!(id %in% id_first & period <= 3) & !(id %in% id_last &
period >= 7)]
base_example[, treat_post := treat*post]

wfe V1 vs V2
microbenchmark(
 wfe_v1 = wfe(y ~ treat_post + x1, data = base_example, treat = "treat_post",
 unit.index = "id", time.index = "period", method = "unit",
 qoi = "ate", hetero.se = TRUE, auto.se = TRUE),

 wfe_v2 = feols(y ~ treat_post + x1 | id, base_example,
 weights = unit_weights(base_example[, .(id, treat_post)])),
 times = 4)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> wfe_v1 119.9691 122.8909 125.53608 126.92805 128.18125 128.3191 4
#> wfe_v2 10.4454 11.3273 11.79133 12.21255 12.25535 12.2948 4

61 / 81

Understanding the speed difference

Q: V2 is about 10 times faster than V1. Why?

62 / 81

Understanding the speed difference

Q: V2 is about 10 times faster than V1. Why?

• V1 is more general (i.e. it does more than just Theorem 1).
To handle the generality, it loops through the full data set for each unit1

• V2 is tailored for Theorem 1 and takes advantage of all possible
simplifications associated to this data structure. Getting the simplifications
required a bit of conceptual thinking

1: the electrons are tired fetching the data!
62 / 81

Takeaway

Rule 2: Never do more than what you need!

63 / 81

How to make fast algorithms?
Summing up

How to make fast algorithms?

Rule 0.a: Open your eyes

You cannot fix a problem that you do not see!
So open the box! Do not accept existing code without criticism.
You can improve existing algorithms, and you should.

65 / 81

How to make fast algorithms?

Rule 0.a: Open your eyes

You cannot fix a problem that you do not see!
So open the box! Do not accept existing code without criticism.
You can improve existing algorithms, and you should.

Rule 0.b: Do not trust AI

Do not take AI answers as definitive answers!
This is tempting, but don’t!
AI models use an authoritative tone that makes you feel dumb and meek.
It’s part of their game because they want a monopoly on “thinking”, and you
win market power by discouraging competitors (you).
Never forget that you’re smart, so use your brain!★

★: even when the problem is diffcult.
65 / 81

How to make fast algorithms?
Continued

Rule 1: Shop efficiently in the RAM's warehouse

• vectorize as much as possible (i.e. shop in the same aisle)
• try to avoid row based algorithms
• think conceptually to find a RAM efficient solution

66 / 81

How to make fast algorithms?
Continued

Rule 1: Shop efficiently in the RAM's warehouse

• vectorize as much as possible (i.e. shop in the same aisle)
• try to avoid row based algorithms
• think conceptually to find a RAM efficient solution

Rule 2: Never do more than what you need

• always try to tailor the algorithm to the problem at hand, not the general
case

• always think conceptually first, only then start to code
• low level languages (like C, C++, Rust, Julia) do not compensate

inefficient algorithms

66 / 81

Thank you for your attention!

67 / 81

Bonus: Productivity tips

Bonus 1: The future of typesetting

The future of typesetting

1. take Latex

2.

3.

4.

5.

70 / 81

The future of typesetting

1. take Latex

2. remove all the problems with it

3.

4.

5.

70 / 81

The future of typesetting

1. take Latex

2. remove all the problems with it

3. keep the best of it

4.

5.

70 / 81

The future of typesetting

1. take Latex

2. remove all the problems with it

3. keep the best of it

4. improve it

5.

70 / 81

The future of typesetting

1. take Latex

2. remove all the problems with it

3. keep the best of it

4. improve it

5. you end up with typst!

typst★ may be the best thing that happened to typesetting in decades ever

★: https://typst.app/ + VSCode extension tinymist
70 / 81

https://typst.app/
https://github.com/Myriad-Dreamin/tinymist

OK what’s the fuss?

typst key features (among other):

• instant compile time

• compilation issues are flagged on the spot

• great documentation

• it’s a proper programming langage (variables/functions/loops/conditions)

• anything you have in mind can be done

In 5-6 years time, it will completely supersede Latex.
We just need to wait for the current editors to retire 😉

71 / 81

OK what’s the fuss?

typst key features (among other):

• instant compile time

• compilation issues are flagged on the spot

• great documentation

• it’s a proper programming langage (variables/functions/loops/conditions)

• anything you have in mind can be done

In 5-6 years time, it will completely supersede Latex.
We just need to wait for the current editors to retire 😉

Catch the train to the future now!

71 / 81

Bonus 2: Reproductibility made easy

The context

Typical research project

• takes years

• thousands of lines of code

• dozens and dozens of files

• it’s a hot mess

Problem

You found a problem in a variable: you clean it differently now:
=> many results should be changed downstream

What do you do?

73 / 81

Solutions to the problem

Solution 1

You run all the existing code

Problems:
• P1: you need to track the specific order in which the code needs to be run
• P2: can be very slow if code takes a while to run

Solution 2

You run only the code that explicily depends on your changes.

Problems:
• P1: you need to track the specific order in which the code needs to be run
• P3: you need to precisely map the code dependencies

74 / 81

rmake

rmake: New R-package to handle all this:

• automatic dependency detection (files/functions)

• detects when code is changed (ignore comments) and automatically
updates what needs to be updated – and nothing more

• you★ don’t need to care about anything! It’s all automatic!

★: almost
75 / 81

rmake

rmake: New R-package to handle all this:

• automatic dependency detection (files/functions)

• detects when code is changed (ignore comments) and automatically
updates what needs to be updated – and nothing more

• you★ don’t need to care about anything! It’s all automatic!

How does it work?

• the code is divided into independent code chunks

• you declare a chunk with a starting = in a header comment:☆
= This is a chunk

• file dependencies are statically deduced from I/O functions

★: almost
☆: header comment = comment ending with four hashes

75 / 81

rmake example

####
= main data set
####

set.seed(1)

n = 100
base = data.frame(x = rnorm(n))
base$y = 2 + 0.5 * base$x + rnorm(n)

saveRDS(base, "rmake-example/_DATA/data-example.rds")

####
= OLS estimation
####

base = readRDS("rmake-example/_DATA/data-example.rds")

library(fixest)

est = feols(y ~ x, base)
etable(est, export = "rmake-example/images/EST_yx.png")

• 2 chunks
• any change in the data

creation leads to change
in the estimation

• run rmake() and everything
is taken care of

76 / 81

rmake example

1. Create file with the previous code, run rmake:

rmake::rmake()
#> The following chunks need to be run:
#> file chunk new code fun input output indirect
#> rmake-example.R main data set X
#> rmake-example.R OLS estimation X X
> Proceed (y, yes; anything else: no)? y
#> rmake-example.R@01: main data set ... < 0.1s
#> rmake-example.R@02: OLS estimation ... 3.2s
rmake::rmake()
#> All code chunks are up to date.

77 / 81

rmake example

1. Create file with the previous code, run rmake:

rmake::rmake()
#> The following chunks need to be run:
#> file chunk new code fun input output indirect
#> rmake-example.R main data set X
#> rmake-example.R OLS estimation X X
> Proceed (y, yes; anything else: no)? y
#> rmake-example.R@01: main data set ... < 0.1s
#> rmake-example.R@02: OLS estimation ... 3.2s
rmake::rmake()
#> All code chunks are up to date.

2. Modify code in “main data set”, then run rmake:

rmake::rmake()
#> The following chunks need to be run:
#> file chunk new code fun input output indirect
#> rmake-example.R main data set X
#> rmake-example.R OLS estimation X
#> Previous run-time for 2 existing chunks: 3.2s
> Proceed (y, yes; anything else: no)? y
#> rmake-example.R@01: main data set ... < 0.1s
#> rmake-example.R@02: OLS estimation ... 1.6s

77 / 81

rmake

Available on Github:

https://github.com/lrberge/rmake

remotes::install_github("https://github.com/lrberge/rmake")

78 / 81

https://github.com/lrberge/rmake

Bonus 3: New R console

sircon

I created a new R console for Windows (later it will be ported to linux/MacOS)

sircon: Simple R console

https://github.com/lrberge/sircon

Although it’s still in development, it currently works, and will be improved!

80 / 81

https://github.com/lrberge/sircon

Thanks for your attention!

Have fun!

81 / 81

	Typical research workflow
	Typical research workflow
	Typical research workflow
	Theory
	Reality
	Theory
	Reality
	Similarity of patents 1 and 2
	Let's code this up!
	Similarity of patents 1 and 2
	Let's code this up!
	Let's test the two algorithms
	Let's test the two algorithms
	Let's test the two algorithms
	With you finger: Apply the two algorithms
	Back to the text-similarity example
	Back to the text-similarity example
	Task: Count the red dots
	Task: Count the red dots
	Task: Count the red dots

