Computes the confidence intervals of parameter estimates for fixest's multiple
estimation objects (aka fixest_multi).
Usage
# S3 method for class 'fixest_multi'
confint(
object,
parm,
level = 0.95,
vcov = NULL,
se = NULL,
cluster = NULL,
ssc = NULL,
...
)Arguments
- object
A
fixest_multiobject obtained from a multiple estimation infixest.- parm
The parameters for which to compute the confidence interval (either an integer vector OR a character vector with the parameter name). If missing, all parameters are used.
- level
The confidence level. Default is 0.95.
- vcov
Versatile argument to specify the VCOV. In general, it is either a character scalar equal to a VCOV type, either a formula of the form:
vcov_type ~ variables. The VCOV types implemented are: "iid", "hetero" (or "HC1"), "cluster", "twoway", "NW" (or "newey_west"), "DK" (or "driscoll_kraay"), and "conley". It also accepts object fromvcov_cluster,vcov_NW,NW,vcov_DK,DK,vcov_conleyandconley. It also accepts covariance matrices computed externally. Finally it accepts functions to compute the covariances. See thevcovdocumentation in the vignette.- se
Character scalar. Which kind of standard error should be computed: “standard”, “hetero”, “cluster”, “twoway”, “threeway” or “fourway”? By default if there are clusters in the estimation:
se = "cluster", otherwisese = "iid". Note that this argument is deprecated, you should usevcovinstead.- cluster
Tells how to cluster the standard-errors (if clustering is requested). Can be either a list of vectors, a character vector of variable names, a formula or an integer vector. Assume we want to perform 2-way clustering over
var1andvar2contained in the data.framebaseused for the estimation. All the followingclusterarguments are valid and do the same thing:cluster = base[, c("var1", "var2")],cluster = c("var1", "var2"),cluster = ~var1+var2. If the two variables were used as fixed-effects in the estimation, you can leave it blank withvcov = "twoway"(assumingvar1[resp.var2] was the 1st [resp. 2nd] fixed-effect). You can interact two variables using^with the following syntax:cluster = ~var1^var2orcluster = "var1^var2".- ssc
An object of class
ssc.typeobtained with the functionssc. Represents how the degree of freedom correction should be done.You must use the functionsscfor this argument. The arguments and defaults of the functionsscare:K.adj = TRUE,K.fixef = "nonnested",G.adj = TRUE,G.df = "min",t.df = "min",K.exact = FALSE). See the help of the functionsscfor details.- ...
Not currently used.
Value
It returns a data frame whose first columns indicate which model has been estimated. The last three columns indicate the coefficient name, and the lower and upper confidence intervals.
Examples
base = setNames(iris, c("y", "x1", "x2", "x3", "species"))
est = feols(y ~ csw(x.[,1:3]) | sw0(species), base, vcov = "iid")
confint(est)
#> id fixef rhs coefficient 2.5 % 97.5 %
#> 1 1 1 x1 (Intercept) 5.5798647 7.47258038
#> 2 1 1 x1 x1 -0.5298200 0.08309785
#> 3 2 1 x1 + x2 (Intercept) 1.7590943 2.73918600
#> 4 2 1 x1 + x2 x1 0.4585161 0.73253337
#> 5 2 1 x1 + x2 x2 0.4380915 0.50574857
#> 6 3 1 x1 + x2 + x3 (Intercept) 1.3603752 2.35161975
#> 7 3 1 x1 + x2 + x3 x1 0.5191189 0.78255545
#> 8 3 1 x1 + x2 + x3 x2 0.5970350 0.82122888
#> 9 3 1 x1 + x2 + x3 x3 -0.8085615 -0.30440382
#> 10 4 species x1 x1 0.5933983 1.01372348
#> 11 5 species x1 + x2 x1 0.2713535 0.59308089
#> 12 5 species x1 + x2 x2 0.6486505 0.90260841
#> 13 6 species x1 + x2 + x3 x1 0.3257653 0.66601260
#> 14 6 species x1 + x2 + x3 x2 0.6937939 0.96469395
#> 15 6 species x1 + x2 + x3 x3 -0.6140049 -0.01630542
# focusing only on the coefficient 'x3'
confint(est, "x3")
#> id fixef rhs coefficient 2.5 % 97.5 %
#> 1 3 1 x1 + x2 + x3 x3 -0.8085615 -0.30440382
#> 2 6 species x1 + x2 + x3 x3 -0.6140049 -0.01630542
# the 'id' provides the index of the estimation
est[c(3, 6)]
#> x.1 x.2
#> Dependent Var.: y y
#>
#> Constant 1.856*** (0.2508)
#> x1 0.6508*** (0.0667) 0.4959*** (0.0861)
#> x2 0.7091*** (0.0567) 0.8292*** (0.0685)
#> x3 -0.5565*** (0.1275) -0.3152* (0.1512)
#> Fixed-Effects: ------------------- ------------------
#> species No Yes
#> _______________ ___________________ __________________
#> S.E. type IID IID
#> Observations 150 150
#> R2 0.85861 0.86731
#> Within R2 -- 0.65201
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1